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In a previous study (Longuet-Higgins & Cleaver 1994) we calculated the stability of the 
flow near the crest of a steep, irrotational wave, the ‘almost-highest’ wave, considered 
as an isolated wave crest. In the present paper we consider the modification of this 
inner flow when it is matched to the flow in the rest of the wave, and obtain the normal- 
mode perturbations of the modified inner flow. It is found that there is just one 
exponentially growing mode. Its rate of growth /I is a decreasing function of the 
matching parameter c and hence a decreasing function of the wave steepness ak. When 
compared numerically to the rates of growth of the lowest superharmonic instability 
in a deep-water wave as calculated by Tanaka (1983) it is found that the present theory 
provides a satisfactory asymptote to the previously calculated values of the growth 
rate. This suggests that the instability of the lowest superharmonic is essentially due to 
the flow near the crest of the wave. 

CA 92093-0402, USA 

1. Introduction 
The present paper is a sequel to a recent investigation (Longuet-Higgins & Cleaver 

1994, referred to herein as LHC) in which the problem of wave breaking was tackled 
by considering the stability of the flow in an ‘almost-highest wave’, that is to say the 
asymptotic form assumed by the crest of a steep, irrotational gravity wave as the 
limiting Stokes corner flow is approached, but while the crest is still rounded (see 
Longuet-Higgins & Fox 1977, referred to herein as LHF1). It was found that there 
exists just one unstable normal-mode perturbation of this flow, with a form resembling 
the initial stages of a spilling breaker. 

The question then arises : how is this local instability of a gravity wave crest related 
to the known unstable modes of perturbation of a progressive gravity wave? For 
example, it was shown numerically by Tanaka (1983) and Longuet-Higgins (1986) and 
analytically by Saffman (1 989, that the lowest superharmonic perturbation becomes 
unstable at a value of the wave steepness parameter ak = 0.4292, corresponding to the 
first maximum in the wave energy density as a function of ak. Is this superharmonic 
instability essentially the result of the local flow near the wave crest? 

Now the ‘almost-highest wave’ considered in LHFl and LHC is the inner flow near 
the wave crest, in terms of a small parameter c which measures departure of the flow 
from an ideal Stokes corner flow. Thus we may define 

c = 9,/2c, (1.1) 
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where q,, is the particle speed at the crest, in a frame moving horizontally with the wave- 
speed c. For small values of € the flow near the crest (within a distance of order 2) is 
described by the ‘almost-highest’ wave. However, if we wish to calculate the properties 
of progressive waves with slightly less than the limiting steepness, this inner flow must 
be matched asymptotically to the ‘outer flow’ in the rest of the wave, as described by 
Longuet-Higgins & Fox (1978, referred herein to as LHF2). It was there shown that 
this approach of working downwards from the wave of limiting steepness predicts 
successfully the surface profile, the wave speed, and other integral properties as a 
function of the steepness ak. 

The process of matching the inner and outer flows introduces a small correction to 
the inner flow, of order c3(A-1), where h is the root of a transcendental equation; see 
LHF2. Our hypothesis is that the perturbations of the corrected inner flow will yield 
the asymptotic behaviour of the superharmonic instability, and hence show that it is 
essentially an instability of the flow in the wave crest. 

An outline of the paper is as follows. In 92 we describe the matching technique and 
in 993 and 4 determine the corrected inner flow, as in Fox (1977). In $ 5  we derive 
equations for the perturbation of this inner flow. In fact these are given by a 
modification to the correcting equations for the original inner flow, as derived in LHC. 
The results of the calculations are described and discussed in 96. 

2. The matching technique 
We shall use the same notation and coordinates as in LHC, choosing units of mass, 

length and time so that the fluid density and the gravitational acceleration g are both 
unity. The wavelength is taken to be 2x. 

As was seen in $2 of LHF2, the fluid domain in any steep, progressive wave may be 
divided into three distinct zones : an inner zone I of radius 2 centred on the wave crest, 
in which typical lengths are of order 2 and typical velocities are O(c);  an intermediate 
zone 11, where typical lengths and velocities are of order e and ei respectively; and an 
outer zone I11 where lengths and velocities are of order unity; see figure 1. Thus in Zone 
I we have 

z = 2z1, x = €3X1, (2.1) 

where z1 and x1 are of order unity. From LHFl we know that 

z1 = (;ixl$ (1 + R), 
R = C(iXl)-(l+i/d + c*( -ix )-(l-ip) where 1 , 

C is a constant and ,u is the positive root of 

viz.p=O.7143 .... Asxl+co,soclearlyR+Oand 

representing the Stokes 120” corner-flow. 
On the other hand in Zone I11 we know from LHF2 (see also Grant 1973) that in 

the limit e + 0 (a sharp-crested, limiting wave), and as x + 0 (the neighbourhood of the 
sharp crest), so 

z - (gix); [I + y(i~)”~] ,  (2.6) 
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I11 

FIGURE 1. (after LHF2). Sketch showing regions of validity for the inner solution (Zone I), outer 
solution (Zone 111) and matching of the two solutions (Zone 11). 

where h is the lowest positive root of 

xh xh x 
2 2 22/3’ 

-tan- = -__ 

namely h = 1.8027 ... 
and y is a constant. It was found numerically in LHF2, $3, 
on deep water 

($7 = 0.131 SO y = 0.100. 

(2.8) 
that for a progressive wave 

(2.9) 
Now by matching the solutions in Zone 11, as in $2 of LHF2, we see that the inner 

flow (2.2) has to be modified as in equation (2.6), that is by multiplying by a factor 
F such that when x1 --f 00 

F - 1 +y(ix)’-l 
= 1 + y ( i ~ ~ ~ ~ ) ’ - l  
= 1 + yy(iXl)’-l, (2.10) 

(2.11) = €3(h-1) = 2 481  where € ’  . 
This defines the behaviour of the inner flow for large values of xl. 

3. Determination of the inner flow 
To derive complete equations for the inner flow we introduce as in LHFl the 

transformation 

and write 

6 - ixl 
6 + ixl 

= w,  (wI < 1 

z1 = (6 + ix,); ~ ( w )  + y(6+ ixl)”-” &w), 

B(w) = B,+B,w+B,d+ ... 

E(w) = & + + l w + & w 2 + . . .  . 

z1 - (6 + ixl>g ~ ( w )  [I  + y y ( i ~ ~ ) ~ \ - ~ ]  

where 

as before, and 

By equation (2.10) we have that as x1 + co so 

- (6 + ixl)i ~ ( w )  [I  + yy(6 + ixl)‘-l] 
= (6 + iXl)t ~ ( w )  + yy(6 + iX1)’-g ~ ( w ) .  

Comparing (3.2) and (3.5) we see that 

that is, as w+- 1. Hence 
B(w) - y ~ ( w )  as xl+ co, 

B( - 1) = yB( - 1). 

(3.5) 
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But from (2.2) and (3.2) we have 

Thus we must have 
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B( - 1) = ($ = 1.3104. 

&-El+ E,+ ... = E(-1) = 0.100. 

We specify also that B(w) vanishes at the wave crest (w = I), and so - 
B , + B , + B , + . . .  = B(1) = 0. (3.10) 

4. The free-surface condition for B(w)  
The condition of constant pressure at the free surface may be written 

dz dz” 
(z+z*)--- = 1 

dX dX* 
(4.1) 

(see LHC 92), to be satisfied on IwI = 1. The same equation is valid when z is replaced 
by z1 and x by xl. But from equation (3.1) we have 

26 
(6+ix1) = ~ 

l + W  

where H(w) = $B(w) - (1 + 0 )  B’(w) 

as in LHC $2, while 

Thus from (3.2) and (4.2) we have 

k ( w )  = (h -+)B(w) -H(w)B; (w) .  

i z1 = A’( 1 + (o)-g B(w) + 7A3’-’( 1 + E(w), 

dz - i L =  A- ( 1 + w)+ H ( ~ )  + p 4 ( 1  + o)-~-+ I?(w), 
dX1 

and A = (26);. 
It is convenient to write the boundary condition for z1 as 

zl- __ +c.c. = 1, 
dX1 dzl idz,)’ dX1 

(4.7) 

where C.C. denotes the complex-conjugate expression. Then on substituting for z, and 
dzl/dX1 and considering the terms in 7’ and v1 respectively we obtain 

w-; B(w) H(0)  H(0-1) + C.C. = 1, 

(1 + ,)1-h w-; B(w) H(w) H(w-l) + C.C. 

+ (1 + w)1-h w-4 B(w) H(w)  H(w-1) + C.C. 

(4.9) 
and 

+ (1 + w)l-A w”-8 B(w) H(w) I?(@-1) + C.C. = 0. (4.10) 

On extracting the real factor 

[( 1 + w )  (1 + w-l)]3-h)  (4.11) 
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n N = 3 0  N = 40 N = 50 

0 0.047765 0.047761 0.047 758 

2 0.014920 0.014921 0.0 14 92 1 
3 0.003529 0.003 531 0.003 532 
4 0,001474 0.001 475 0.001 476 
5 0.000858 0.000858 0.000 859 
6 0.000570 0.000571 0.000 571 
7 0.000371 0.000371 0.000 372 
8 0.000292 0.000292 0.000293 
9 0.000192 0.000 192 0.000 193 

10 0.000167 0.000 167 0.000 167 
11 0.000108 0.000 108 0.000 108 
12 0.000101 0.000 101 0.000 101 
13 0.000063 0.000062 0.000 062 
14 0.000064 0.000064 0.000 064 
15 0.000037 0.000037 0.000037 
16 0.000041 0.000041 0.000 04 1 
17 0.000022 0.000 022 0.000 022 
18 0.000028 0.000 027 0.000027 
19 0.000013 0.000 01 3 0.00001 3 

TABLE 1. Coefficients Bn in the expansion of the modified inner solution, equations (3.2) and (3.4) 

1 -0.070711 -0.070706 -0.070702 

from each of the terms in equation (4.10) and writing 

we find that (4.10) reduces to 

H(w) H(w-1) wp B(w) + C.C. 

+ B(w) H(w-1) wp E ( w )  + C.C. 

+ B(w-1) H(w-1) wQ E(w) + C.C. = 0. (4.13) 

The functions B(w) and H(o) are already given in terms of the known coefficients B,, 
calculated in LHC, $4. Moreover when IwI = 1, w p  may be expanded in the Fourier 
series 

w p  = C p n w n ,  o = ei7 (4.14) 
00 

-m 

valid in -n < r < n, where 
sin (n -p)  72: 

pn = (n-p>n . (4.15) 

Similarly for w*.  Thus by equating coefficients of cosmr, m = 0,1,2, ..., in equation 
(4.13) we obtain a sequence of linear equations for the unknown coefficients En. By 
taking the first ( N -  1) of these equations and truncating the sequence En after n = N 
we may solve the equations together with (3.9) and (3.10) to find Bo, ..., E N .  Then N 
is allowed to increase until the lower coefficients have numerically converged. 

The result of this procedure is displayed in table 1, where E,,, Bl, ..., B,, are given 
when N = 30,40 and 50. It will be seen that the coefficients have converged effectively 
to 4 or 5 decimal places. 

w 
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The corresponding surface profiles are shown in figure 2 for c = 0,0.1, 0.2 and 0.3. 
In figure 2(a)  the profiles are plotted with the scaled coordinate z1 = e-'z. In figure 2(b) 
they are plotted against z.  It should be borne in mind that these represent only the inner 
solution near the crest of the wave, so that in figure 2(b) the region of validity is only 
within a distance O ( 2 )  from the wave crest. 

The relation between the parameter c, defined by equation (l.l), and the steepness 
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FIGURE 3 .  Relation between the parameter E and the wave steepness ak. The broken 
line shows the asymptote (4.16). 

parameter ak for progressive irrotational waves in deep water may be calculated 
directly using Stokes’s expansion. The result is shown in figure 3. The dashed line 
corresponds to the asymptote 

ak = 0.4432 - 0.50~’ + 0 . 5 0 3 ~ ~  cos (2.143 In C- 1.54) (4.16) 

derived in LHF2, equation (5.4). 

5. The normal-mode perturbations 
To find the normal-mode perturbations of the modified flow we proceed as in $5 of 

LHC1, that is we write 

where Z represents the unperturbed, steady flow of equation (3.2) and [is a small, time- 
dependent perturbation whose square we shall neglect. The free surface is specified by 

z1 = Z+[, (5.1) 

$1 = F(419 0, (5.2) 

(Z+Z*)Z,Z,* = 1 (5.3) 

where 
surface condition 

= Im(x,) is of the same order as 5. Then as in LHCl we are led to the free- 

at lowest order, and at order 5 
Z,*( Ct + iZx 4) = - iZ, Z,*([ + [*) - $(Z + Z*) (Z,* [, + Z, [:) 

+$i [(Z+ Z*) (Z,Z,*,-Z,* Z,,) + (2; -2,) Zx Z,*] F 

- ql, 
both to be satisfied on $, = 0. 

Now from (3.2) and (4.2) we have 

% 

that is 

where A = (28); and 

Z = A’( 1 + w)-i B(w), 

~ 

B(w) = B(w) + 7A3(’-l) (1 + w)l-’ B(w), 

(5.4) 

(5.7) 
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a known function, expansible in positive powers of w. From (5.6) we may also write 

where 

2, = iA-l( 1 + w); 

zxx = ~ - ~ ( 1 +  
- * 

- - - - 1  (5.9) 
E ( w )  = @(w) - (1 + w )  B'(w), 

G(w) = @(w) - $( 1 + w )  P(w) - (1 + w)2&(w), 

and a prime denotes d/dw. Similarly if 

c = C(w> 

6 X = - i~-3(1+ w )  ~ ( ~ 1 ,  
E(w) = (1 + w )  C'(w). 

then 

where 

(5.10) 

(5.11) 

(5.12) 

then on substituting in equation (5.4) we obtain 

a 
a t  

-i-[P(w)C(w)-R(w)F(t)] = Re[Q(w)E(w)-R(w) C(w)] 

1 d F  
(1 +cosr)-+S(w)F(r) dr (5.13) 

to be satisfied on 
w = el', -n < r < n. (5.14) - -  - 

In equation (5.14), P, Q,  R, S are precisely the same functionals of jh & and 6 as they 
are of B, H and G in equation (5.16) of LHC1. Moreover, since &w), like B(w), is 
expansible in positive powers of w ,  all the remainder of $ 5  of LHCl applies also. Thus 
we may seek normal-mode solutions in which 5 and F have a time dependence like ePt, 
and proceed to determine /3 in a similar manner. 

6. Results 
Calculations of the eigenvalues were carried out with S = 10: as in LHCl and E in 

the range 0 to 0.105. It was found that all the eigenvalues p2 were real. Moreover, only 
the lowest eigenvalue /3: was positive, corresponding to an exponential growth or decay 
rate Po. In figure 4 /3: is plotted as a function of E ,  and will be seen to be a steadily 
decreasing function of E ,  diminishing from /3: = 0.00292 at e = 0 to zero at about 
E = 0.102, apparently. The computation is valid, however, only for sufficiently small 
values of F .  

It is more revealing to consider the unscaled growth rate P / ~ E ,  relative to the radian 
frequency a of a progressive deep-water wave of low amplitude (a2 = gk, where k is the 
wavenumber). Figure 5 shows @,,/~a)~ plotted against the wave steepness ak. The 
curve on the upper right of the diagram corresponds to that in figure 4, the same 
portions being shown by solid or broken curves. The remaining plots in figure 5 are of 
the frequencies of the lowest (non-trivial) superharmonic mode of a progressive wave 
of finite amplitude, as calculated by Tanaka (1983) and Longuet-Higgins (1978, 1986). 
The quantity -ai/a2 is plotted from figure 7 of Tanaka (1983) and table 2(b) of 
Longuet-Higgins (1 986). These calculations demonstrated that the lowest mode 
becomes unstable at around ak = 0.4292, where the energy density has a local 
maximum (see also Saffman 1985). This point is marked by a cross ( x ) in figures 4 
and 5. 
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FIGURE 4. The rate of growth Po of the unstable mode. /3: is shown as a function of 8. 
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ak 
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FIGURE 5. Growth rates of the crest instability compared with those of the lowest superharmonic 
instability in a progressive, irrotational wave in deep water: 0-0 @o/v)>2, from figure 4; 
0-0 -(v2/v)' from Longuet-Higgins (1978, 1986); +---+ -(v,/n)' from Tanaka (1983). 

From figure 5 it appears that the calculations of the present paper provide an 
asymptote for the previous calculations of the lowest superharmonic instability, in the 
limit as E + O  and ak+(ak),,,. In other words, the superharmonic instability is 
associated primarily with the instability of the flow near the wave crest; it is a 'crest 
instability '. 
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Secondly, the asymptotic analysis, so far as it has been carried in the present paper, 
is valid only for sufficiently small values of c (as one would expect). Figure 5 suggests 
that the limit of validity is at about c = 0.08 (ak = 0.440). More accurate calculations 
of this instability from the present point of view would have to take account of the flow 
not only in the inner zone I (see 92 above) but also in the matching zone I1 and hence 
also the flow in zone 111. This would imply corrections depending upon higher powers 
of C. 

The displacement of the free surface corresponding to the growing unstable mode is 
shown in figure 6, for the case t: = 0.08. It will be seen to be practically identical in form 
to the case c = 0, shown in figures 3 and 4 of LHC. That is, the fluid near the crest is 
displaced forwards, and the 'toe' of the breaker occurs at about y1 = -2.3. The chief 
discernible difference is in the rate of growth Po, which is 0.0544 when t: = 0 and 0.0421 
when E = 0.08. According to figure 4, /3: decreases almost parabolically with C, so that 

/3: = 0.00296- 0.030~'. (6.11 

Hence in the unscaled time frame the rate of growth p' = /3,/en relative to the radian 
frequency n of a progressive wave in deep water (and of small slope) may be written 

p' = 0.0544~-~( 1 - 0.05~'), (6.2) 

generalizing equation (6.5) of LHC. This is valid only when 0 d c < 0.08. Since over 
this range t:' z 2Aak, where Aak is the difference between the steepness parameter ak 
and its limiting value 0.4432, we have also 

over the same range. 
Tanaka (1983) does not describe the surface profile of the instability in his 

calculations, so that changes in the form of the instability in the range 
0.4292 < ak < 0.44 cannot be ruled out. 

p' z 0.0385(Aak)-~(l-O.lOAak) (6.3) 
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7. Conclusions and discussion 
We have extended the stability calculations for the almost-highest wave to waves of 

slightly lower steepness ak, taking into account the lowest-order perturbation to the 
inner flow, which is of order e3(h-1). As before, there is just one unstable mode for the 
inner flow, with a form resembling the initial stages of a spilling breaker. Its rate of 
growth Po is a decreasing function of the perturbation parameter t:. The curve of Po/€  
as a function of the wave steepness parameter ak is found to be a satisfactory 
asymptote to Tanaka’s previously calculated values of the lowest superharmonic 
instability (n = 2). The form of the instability is almost independent of t: and k when 
0 < t: < 0.08, but the rate of growth depends strongly on e. 

The lowest superharmonic instability becomes unstable at the lowest value of ak for 
which the wave energy density is a maximum (ak = 0.4292). As mentioned by Tanaka 
(1985,94) the next highest superharmonic mode ( n  = 3) becomes unstable also, but at 
the next highest stationary value of the energy, as a function of ak. We may conjecture 
that this mode also tends asymptotically to a form described by the theory of the 
almost-highest wave. 

From these results we have drawn the conclusion that the reason for the existence 
of the superharmonic instability is the form of the flow in the crest of the wave; it is 
essentially a ‘crest instability’. The fact that the superharmonic mode first becomes 
unstable at a stationary value of the energy in the wave as a whole need not deter us 
from this conclusion. For the maximum of the energy can itself be regarded as a result 
of the peculiar form of the flow in the almost-highest wave, as described by the inner 
flow near the wave crest. 

The form of the inner flow described in LHCl is not of course limit to steep, periodic 
waves in deep water; it will apply also to periodic waves in water of finite depth, or to 
solitary waves in shallow water, for example. However the modification to the inner 
flow, which depends on the nature of the outer flow, will be different in the various 
cases. From our results for deep water, it seems likely that this modification to the inner 
flow will affect the rate of growth, but not the form, of the crest instability. 

Finally, it is possible that similar conclusions will apply to the final breaking of 
waves that are not strictly periodic, such as those associated with wave groups which 
arise from subharmonic instabilities of the Benjamin-Feir type ; see Longuet-Higgins 
& Cokelet (1978), Dold & Peregrine (1987). Such numerical calculations certainly 
suggest that the ultimate overturning of the crest of a gravity wave has a characteristic 
form, largely independent of its previous history of growth. 

In mixed seas, having a broad frequency spectrum, the situation is different. There, 
the field observations by Holthuijsen & Herbers (1986) show that breaking can occur 
at much lower wave steepnesses; ak = 0.3 is a typical value. Such breaking is probably 
initiated by a more global type of instability, leading to strong fore-and-aft asymmetry 
of the waves prior to overturning. The process of formation of the final jet, however, 
may have some features in common with the much smaller jet arising from a crest 
instability. 

The implications for very short gravity waves should also be recalled from LHC. 
There it was pointed out that as soon as the crest instability grows sufficiently to induce 
a sharp curvature on the forward shape of the wave, surface tension may intervene to 
produce parasitic capillary waves ahead of the sharp curvature, as is often observed. 
There may also be a ‘capillary roller’ following the sharp curvature, which will lead to 
the roughness and ultimate crumpling of the wave crest - a quite distinct style of wave 
breaking; see Longuet-Higgins (1993). 
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The present paper is based in part on Chapter 7 of Fox (1977) and chapter 8 of 
Cleaver (198 1). The calculations have been completely reworked and extended by 
M.S.L.-H. This study has been supported by the Office of Naval Research under 
Contract NOOO14-91-5- 1582. 
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